Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
1.
Nat Commun ; 15(1): 3483, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664416

ABSTRACT

Chemical discovery efforts commonly target individual protein domains. Many proteins, including the EP300/CBP histone acetyltransferases (HATs), contain several targetable domains. EP300/CBP are critical gene-regulatory targets in cancer, with existing high potency inhibitors of either the catalytic HAT domain or protein-binding bromodomain (BRD). A domain-specific inhibitory approach to multidomain-containing proteins may identify exceptional-responding tumor types, thereby expanding a therapeutic index. Here, we discover that targeting EP300/CBP using the domain-specific inhibitors, A485 (HAT) or CCS1477 (BRD) have different effects in select tumor types. Group 3 medulloblastoma (G3MB) cells are especially sensitive to BRD, compared with HAT inhibition. Structurally, these effects are mediated by the difluorophenyl group in the catalytic core of CCS1477. Mechanistically, bromodomain inhibition causes rapid disruption of genetic dependency networks that are required for G3MB growth. These studies provide a domain-specific structural foundation for drug discovery efforts targeting EP300/CBP and identify a selective role for the EP300/CBP bromodomain in maintaining genetic dependency networks in G3MB.


Subject(s)
E1A-Associated p300 Protein , Gene Regulatory Networks , Medulloblastoma , Humans , Medulloblastoma/genetics , Medulloblastoma/drug therapy , Medulloblastoma/metabolism , Medulloblastoma/pathology , E1A-Associated p300 Protein/metabolism , E1A-Associated p300 Protein/genetics , E1A-Associated p300 Protein/antagonists & inhibitors , Cell Line, Tumor , Gene Regulatory Networks/drug effects , Animals , Protein Domains , Gene Expression Regulation, Neoplastic/drug effects , Mice , Cerebellar Neoplasms/genetics , Cerebellar Neoplasms/drug therapy , Cerebellar Neoplasms/metabolism , Cerebellar Neoplasms/pathology , Antineoplastic Agents/pharmacology
2.
bioRxiv ; 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38585889

ABSTRACT

The cellular plasticity of neuroblastoma is defined by a mixture of two major cell states, adrenergic (ADRN) and mesenchymal (MES), which may contribute to therapy resistance. However, how neuroblastoma cells switch cellular states during therapy remains largely unknown and how to eradicate neuroblastoma regardless of their cell states is a clinical challenge. To better understand the lineage switch of neuroblastoma in chemoresistance, we comprehensively defined the transcriptomic and epigenetic map of ADRN and MES types of neuroblastomas using human and murine models treated with indisulam, a selective RBM39 degrader. We showed that cancer cells not only undergo a bidirectional switch between ADRN and MES states, but also acquire additional cellular states, reminiscent of the developmental pliancy of neural crest cells. The lineage alterations are coupled with epigenetic reprogramming and dependency switch of lineage-specific transcription factors, epigenetic modifiers and targetable kinases. Through targeting RNA splicing, indisulam induces an inflammatory tumor microenvironment and enhances anticancer activity of natural killer cells. The combination of indisulam with anti-GD2 immunotherapy results in a durable, complete response in high-risk transgenic neuroblastoma models, providing an innovative, rational therapeutic approach to eradicate tumor cells regardless of their potential to switch cell states.

3.
Blood ; 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38446698

ABSTRACT

Hemophagocytic lymphohistiocytosis (HLH) comprises a severe hyperinflammatory phenotype driven by the overproduction of cytokines, many of which signal via the JAK/STAT pathway. Indeed, the JAK1/2 inhibitor ruxolitinib has demonstrated efficacy in pre-clinical studies and early-phase clinical trials in HLH. Nevertheless, concerns remain for ruxolitinib-induced cytopenias, which are postulated to result from the blockade of JAK2-dependent hematopoietic growth factors. To explore the therapeutic effects of selective JAK inhibition in mouse models of HLH, we carried out studies incorporating the JAK1 inhibitor itacitinib, the JAK2 inhibitor fedratinib and the JAK1/2 inhibitor ruxolitinib. All three drugs were well-tolerated and at the doses tested, they suppressed interferon-gamma (IFNg)-induced STAT1 phosphorylation in vitro and in vivo. Itacitinib, but not fedratinib, significantly improved survival and clinical scores in CpG-induced secondary HLH. Conversely, in primary HLH, where perforin-deficient (Prf1-/-) mice are infected with lymphocytic choriomeningitis virus (LCMV), itacitinib and fedratinib performed suboptimally. Ruxolitinib demonstrated excellent clinical efficacy in both HLH models. RNA-sequencing of splenocytes from LCMV-infected Prf1-/- mice revealed that itacitinib targeted inflammatory and metabolic pathway genes in CD8 T cells, while fedratinib targeted genes regulating cell proliferation and metabolism. In monocytes, neither drug conferred major transcriptional impacts. Consistent with its superior clinical effects, ruxolitinib exerted the greatest transcriptional changes in CD8 T cells and monocytes, targeting more genes across several biologic pathways, most notably JAK-dependent pro-inflammatory signaling. We conclude that JAK1 inhibition is sufficient to curtail CpG-induced disease, but combined inhibition of JAK1 and JAK2 is needed to best control LCMV-induced immunopathology.

5.
medRxiv ; 2023 Nov 08.
Article in English | MEDLINE | ID: mdl-37986997

ABSTRACT

PURPOSE: Gamma delta T-cell receptor-positive acute lymphoblastic leukemia (γδ T-ALL) is a high-risk but poorly characterized disease. METHODS: We studied clinical features of 200 pediatric γδ T-ALL, and compared the prognosis of 93 cases to 1,067 protocol-matched non-γδ T-ALL. Genomic features were defined by transcriptome and genome sequencing. Experimental modeling was used to examine the mechanistic impacts of genomic alterations. Therapeutic vulnerabilities were identified by high throughput drug screening of cell lines and xenografts. RESULTS: γδ T-ALL in children under three was extremely high-risk with 5-year event-free survival (33% v. 70% [age 3-<10] and 73% [age ≥10], P =9.5 x 10 -5 ) and 5-year overall survival (49% v. 78% [age 3-<10] and 81% [age ≥10], P =0.002), differences not observed in non-γδ T-ALL. γδ T-ALL in this age group was enriched for genomic alterations activating LMO2 activation and inactivating STAG2 inactivation ( STAG2/LMO2 ). Mechanistically, we show that inactivation of STAG2 profoundly perturbs chromatin organization by altering enhancer-promoter looping resulting in deregulation of gene expression associated with T-cell differentiation. Drug screening showed resistance to prednisolone, consistent with clinical slow treatment response, but identified a vulnerability in DNA repair pathways arising from STAG2 inactivation, which was efficaciously targeted by Poly(ADP-ribose) polymerase (PARP) inhibition, with synergism with HDAC inhibitors. Ex-vivo drug screening on PDX cells validated the efficacy of PARP inhibitors as well as other potential targets including nelarabine. CONCLUSION: γδ T-ALL in children under the age of three is extremely high-risk and enriched for STAG2/LMO2 ALL. STAG2 loss perturbs chromatin conformation and differentiation, and STAG2/LMO2 ALL is sensitive to PARP inhibition. These data provide a diagnostic and therapeutic framework for pediatric γδ T-ALL. SUPPORT: The authors are supported by the American and Lebanese Syrian Associated Charities of St Jude Children's Research Hospital, NCI grants R35 CA197695, P50 CA021765 (C.G.M.), the Henry Schueler 41&9 Foundation (C.G.M.), and a St. Baldrick's Foundation Robert J. Arceci Innovation Award (C.G.M.), Gabriella Miller Kids First X01HD100702 (D.T.T and C.G.M.) and R03CA256550 (D.T.T. and C.G.M.), F32 5F32CA254140 (L.M.), and a Garwood Postdoctoral Fellowship of the Hematological Malignancies Program of the St Jude Children's Research Hospital Comprehensive Cancer Center (S.K.). This project was supported by the National Cancer Institute of the National Institutes of Health under the following award numbers: U10CA180820, UG1CA189859, U24CA114766, U10CA180899, U10CA180866 and U24CA196173. DISCLAIMER: The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. The funding agencies were not directly involved in the design of the study, gathering, analysis and interpretation of the data, writing of the manuscript, or decision to submit the manuscript for publication.

6.
Neuro Oncol ; 25(10): 1828-1841, 2023 10 03.
Article in English | MEDLINE | ID: mdl-36971093

ABSTRACT

BACKGROUND: Pediatric high-grade glioma (pHGG) is largely incurable and accounts for most brain tumor-related deaths in children. Radiation is a standard therapy, yet the benefit from this treatment modality is transient, and most children succumb to disease within 2 years. Recent large-scale genomic studies suggest that pHGG has alterations in DNA damage response (DDR) pathways that induce resistance to DNA damaging agents. The aim of this study was to evaluate the therapeutic potential and molecular consequences of combining radiation with selective DDR inhibition in pHGG. METHODS: We conducted an unbiased screen in pHGG cells that combined radiation with clinical candidates targeting the DDR and identified the ATM inhibitor AZD1390. Subsequently, we profiled AZD1390 + radiation in an extensive panel of early passage pHGG cell lines, mechanistically characterized response to the combination in vitro in sensitive and resistant cells and evaluated the combination in vivo using TP53 wild-type and TP53 mutant orthotopic xenografts. RESULTS: AZD1390 significantly potentiated radiation across molecular subgroups of pHGG by increasing mutagenic nonhomologous end joining and augmenting genomic instability. In contrast to previous reports, ATM inhibition significantly improved the efficacy of radiation in both TP53 wild-type and TP53 mutant isogenic cell lines and distinct orthotopic xenograft models. Furthermore, we identified a novel mechanism of resistance to AZD1390 + radiation that was marked by an attenuated ATM pathway response which dampened sensitivity to ATM inhibition and induced synthetic lethality with ATR inhibition. CONCLUSIONS: Our study supports the clinical evaluation of AZD1390 in combination with radiation in pediatric patients with HGG.


Subject(s)
Brain Neoplasms , Glioma , Humans , Child , Glioma/drug therapy , Glioma/genetics , Glioma/radiotherapy , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Brain Neoplasms/radiotherapy , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , DNA Damage , Ataxia Telangiectasia Mutated Proteins/genetics , Ataxia Telangiectasia Mutated Proteins/metabolism
7.
Mol Cancer Ther ; 22(1): 37-51, 2023 01 03.
Article in English | MEDLINE | ID: mdl-36318650

ABSTRACT

Despite improvement in the treatment of medulloblastoma over the last years, numerous patients with MYC- and MYCN-driven tumors still fail current therapies. Medulloblastomas have an intact retinoblastoma protein RB, suggesting that CDK4/6 inhibition might represent a therapeutic strategy for which drug combination remains understudied. We conducted high-throughput drug combination screens in a Group3 (G3) medulloblastoma line using the CDK4/6 inhibitor (CDK4/6i) ribociclib at IC20, referred to as an anchor, and 87 oncology drugs approved by FDA or in clinical trials. Bromodomain and extra terminal (BET) and PI3K/mTOR inhibitors potentiated ribociclib inhibition of proliferation in an established cell line and freshly dissociated tumor cells from intracranial xenografts of G3 and Sonic hedgehog (SHH) medulloblastomas in vitro. A reverse combination screen using the BET inhibitor JQ1 as anchor, revealed CDK4/6i as the most potentiating drugs. In vivo, ribociclib showed single-agent activity in medulloblastoma models whereas JQ1 failed to show efficacy due to high clearance and insufficient free brain concentration. Despite in vitro synergy, combination of ribociclib with the PI3K/mTOR inhibitor paxalisib did not significantly improve the survival of G3 and SHH medulloblastoma-bearing mice compared with ribociclib alone. Molecular analysis of ribociclib and paxalisib-treated tumors revealed that E2F targets and PI3K/AKT/MTORC1 signaling genes were depleted, as expected. Importantly, in one untreated G3MB model HD-MB03, the PI3K/AKT/MTORC1 gene set was enriched in vitro compared with in vivo suggesting that the pathway displayed increased activity in vitro. Our data illustrate the difficulty in translating in vitro findings in vivo. See related article in Mol Cancer Ther (2022) 21(8):1306-1317.


Subject(s)
Cerebellar Neoplasms , Medulloblastoma , Animals , Humans , Mice , Cerebellar Neoplasms/drug therapy , Gemcitabine , Hedgehog Proteins , Mechanistic Target of Rapamycin Complex 1 , Medulloblastoma/genetics , MTOR Inhibitors , Phosphatidylinositol 3-Kinases/therapeutic use , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Proto-Oncogene Proteins c-akt , TOR Serine-Threonine Kinases/therapeutic use
8.
EBioMedicine ; 80: 104065, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35598441

ABSTRACT

BACKGROUND: SJ733, a newly developed inhibitor of P. falciparum ATP4, has a favorable safety profile and rapid antiparasitic effect but insufficient duration to deliver a single-dose cure of malaria. We investigated the safety, tolerability, and pharmacokinetics of a multidose SJ733 regimen and a single-dose pharmacoboost approach using cobicistat to inhibit CYP3A4, thereby increasing exposure. METHODS: Two multidose unboosted cohorts (n = 9) (SJ733, 300 mg and 600 mg daily for 3 days) followed by three single-dose boosted cohorts combining SJ733 (n = 18) (75-, 300-, or 600-mg single dose) with cobicistat (150-mg single dose) as a pharmacokinetic booster were evaluated in healthy volunteers (ClinicalTrials.gov: NCT02661373). FINDINGS: All participants tolerated SJ733 well, with no serious adverse events (AEs), dose-limiting toxicity, or clinically significant electrocardiogram or laboratory test findings. All reported AEs were Grade 1, clinically insignificant, and considered unlikely or unrelated to SJ733. Compared to unboosted cohorts, the SJ733/cobicistat-boosted cohorts showed a median increase in area under the curve and maximum concentration of 3·9 × and 2·6 ×, respectively, and a median decrease in the ratio of the major CYP3A-produced metabolite SJ506 to parent drug of 4·6 × . Incorporating these data in a model of parasite dynamics indicated that a 3-day regimen of SJ733/cobicistat (600 mg/150 mg daily) relative to a single 600-mg dose ± cobicistat would increase parasite clearance from 106 to 1012 parasites/µL. INTERPRETATION: The multidose and pharmacoboosted approaches to delivering SJ733 were well-tolerated and significantly increased drug exposure and prediction of cure. This study supports the further development of SJ733 and demonstrates an innovative pharmacoboost approach for an antimalarial. FUNDING: Global Health Innovative Technology Fund, Medicines for Malaria Venture, National Institutes of Health, and American Lebanese Syrian Associated Charities.


Subject(s)
Antimalarials , Folic Acid Antagonists , Malaria, Falciparum , Malaria , Antimalarials/adverse effects , Cobicistat/therapeutic use , Heterocyclic Compounds, 4 or More Rings , Humans , Isoquinolines , Malaria/drug therapy , Malaria, Falciparum/drug therapy , Malaria, Falciparum/parasitology , Plasmodium falciparum
9.
Nat Commun ; 12(1): 6468, 2021 11 09.
Article in English | MEDLINE | ID: mdl-34753908

ABSTRACT

Survival in high-risk pediatric neuroblastoma has remained around 50% for the last 20 years, with immunotherapies and targeted therapies having had minimal impact. Here, we identify the small molecule CX-5461 as selectively cytotoxic to high-risk neuroblastoma and synergistic with low picomolar concentrations of topoisomerase I inhibitors in improving survival in vivo in orthotopic patient-derived xenograft neuroblastoma mouse models. CX-5461 recently progressed through phase I clinical trial as a first-in-human inhibitor of RNA-POL I. However, we also use a comprehensive panel of in vitro and in vivo assays to demonstrate that CX-5461 has been mischaracterized and that its primary target at pharmacologically relevant concentrations, is in fact topoisomerase II beta (TOP2B), not RNA-POL I. This is important because existing clinically approved chemotherapeutics have well-documented off-target interactions with TOP2B, which have previously been shown to cause both therapy-induced leukemia and cardiotoxicity-often-fatal adverse events, which can emerge several years after treatment. Thus, while we show that combination therapies involving CX-5461 have promising anti-tumor activity in vivo in neuroblastoma, our identification of TOP2B as the primary target of CX-5461 indicates unexpected safety concerns that should be examined in ongoing phase II clinical trials in adult patients before pursuing clinical studies in children.


Subject(s)
DNA Topoisomerases, Type II/metabolism , Indoles/therapeutic use , Morpholines/therapeutic use , Neuroblastoma/drug therapy , Neuroblastoma/metabolism , Pyrimidines/therapeutic use , Sulfonamides/therapeutic use , Animals , Benzothiazoles , Blotting, Western , Cell Line, Tumor , Drug Synergism , Enzyme Activation/drug effects , Flow Cytometry , Fluorescent Antibody Technique , Mice , Mice, Nude , Molecular Dynamics Simulation , Naphthyridines , Real-Time Polymerase Chain Reaction
10.
PLoS One ; 16(10): e0258579, 2021.
Article in English | MEDLINE | ID: mdl-34669728

ABSTRACT

Vitamin D3 (VD3) induces intestinal CYP3A that metabolizes orally administered anti-leukemic chemotherapeutic substrates dexamethasone (DEX) and dasatinib potentially causing a vitamin-drug interaction. To determine the impact of VD3 status on systemic exposure and efficacy of these chemotherapeutic agents, we used VD3 sufficient and deficient mice and performed pharmacokinetic and anti-leukemic efficacy studies. Female C57BL/6J and hCYP3A4 transgenic VD3 deficient mice had significantly lower duodenal (but not hepatic) mouse Cyp3a11 and hCYP3A4 expression compared to VD3 sufficient mice, while duodenal expression of Mdr1a, Bcrp and Mrp4 were significantly higher in deficient mice. When the effect of VD3 status on DEX systemic exposure was compared following a discontinuous oral DEX regimen, similar to that used to treat pediatric acute lymphoblastic leukemia patients, male VD3 deficient mice had significantly higher mean plasma DEX levels (31.7 nM) compared to sufficient mice (12.43 nM) at days 3.5 but not at any later timepoints. Following a single oral gavage of DEX, there was a statistically, but not practically, significant decrease in DEX systemic exposure in VD3 deficient vs. sufficient mice. While VD3 status had no effect on oral dasatinib's area under the plasma drug concentration-time curve, VD3 deficient male mice had significantly higher dasatinib plasma levels at t = 0.25 hr. Dexamethasone was unable to reverse the poorer survival of VD3 sufficient vs. deficient mice to BCR-ABL leukemia. In conclusion, although VD3 levels significantly altered intestinal mouse Cyp3a in female mice, DEX plasma exposure was only transiently different for orally administered DEX and dasatinib in male mice. Likewise, the small effect size of VD3 deficiency on single oral dose DEX clearance suggests that the clinical significance of VD3 levels on DEX systemic exposure are likely to be limited.


Subject(s)
Dasatinib , Vitamin D , Animals , Female , Male , Mice
11.
Antimicrob Agents Chemother ; 65(11): e0113721, 2021 10 18.
Article in English | MEDLINE | ID: mdl-34424039

ABSTRACT

Clinical efficacy of the influenza antiviral baloxavir marboxil (baloxavir) is compromised by treatment-emergent variants harboring a polymerase acidic protein I38T (isoleucine-38-threonine) substitution. However, the fitness of I38T-containing influenza B viruses (IBVs) remains inadequately defined. After the pharmacokinetics of the compound were confirmed in ferrets, animals were injected subcutaneously with 8 mg/kg of baloxavir acid (BXA) at 24 h postinoculation with recombinant BXA-sensitive (BXA-Sen, I38) or BXA-resistant (BXA-Res, I38T) B/Brisbane/60/2008 (Victoria lineage) virus. BXA treatment of donor ferrets reduced virus replication and delayed transmission of the BXA-Sen but not the BXA-Res IBV. The I38 genotype remained dominant in the BXA-Sen-infected animals, even with BXA treatment. In competitive-mixture experiments, no transmission to aerosol contacts was seen from BXA-treated donors coinfected with the BXA-Sen and BXA-Res B/Brisbane/60/2008 viruses. However, in parallel mixed infections with the B/Phuket/3073/2013 (Yamagata lineage) virus background, BXA treatment failed to block airborne transmission of the BXA-Res virus, and the I38T genotype generally predominated. Therefore, the relative fitness of BXA-Res IBVs is complex and dependent on the virus backbone and within-host virus competition. BXA treatment of single-virus-infected ferrets hampers aerosol transmission of the BXA-Sen virus and does not readily generate BXA-Res variants, whereas mixed infections may result in propagation of BXA-Res IBVs of the Yamagata lineage. Our findings confirm the antiviral potency of baloxavir against IBVs, while supporting optimization of the dosing regimen to maximize clinical benefit.


Subject(s)
Influenza, Human , Pharmaceutical Preparations , Animals , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Dibenzothiepins , Drug Resistance, Viral/genetics , Ferrets , Humans , Influenza B virus/genetics , Influenza, Human/drug therapy , Morpholines , Pyridones/therapeutic use , Time-to-Treatment , Triazines/therapeutic use
12.
Clin Transl Sci ; 14(4): 1490-1504, 2021 07.
Article in English | MEDLINE | ID: mdl-33742760

ABSTRACT

Vincristine (VCR) is one of the most widely prescribed medications for treating solid tumors and acute lymphoblastic leukemia (ALL) in children and adults. However, its major dose-limiting toxicity is peripheral neuropathy that can disrupt curative therapy. Peripheral neuropathy can also persist into adulthood, compromising quality of life of childhood cancer survivors. Reducing VCR-induced neurotoxicity without compromising its anticancer effects would be ideal. Here, we show that low expression of NHP2L1 is associated with increased sensitivity of primary leukemia cells to VCR, and that concomitant administration of VCR with inhibitors of NHP2L1 increases VCR cytotoxicity in leukemia cells, prolongs survival of ALL xenograft mice, but decreases VCR effects on human-induced pluripotent stem cell-derived neurons and mitigates neurotoxicity in mice. These findings offer a strategy for increasing VCR's antileukemic effects while reducing peripheral neuropathy in patients treated with this widely prescribed medication.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Peripheral Nervous System Diseases/prevention & control , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Ribonucleoproteins, Small Nuclear/antagonists & inhibitors , Vincristine/adverse effects , Adolescent , Animals , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Cells, Cultured , Child , Drug Resistance, Neoplasm/genetics , Female , Gene Expression Regulation, Leukemic , Gene Knockdown Techniques , Humans , Induced Pluripotent Stem Cells , Male , Mice , Neurons , Peripheral Nervous System Diseases/chemically induced , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , Primary Cell Culture , Ribonucleoproteins, Small Nuclear/genetics , Ribonucleoproteins, Small Nuclear/metabolism , Vincristine/therapeutic use , Xenograft Model Antitumor Assays , Young Adult
13.
Blood ; 137(12): 1628-1640, 2021 03 25.
Article in English | MEDLINE | ID: mdl-33512458

ABSTRACT

Acute erythroid leukemia (AEL) is characterized by a distinct morphology, mutational spectrum, lack of preclinical models, and poor prognosis. Here, using multiplexed genome editing of mouse hematopoietic stem and progenitor cells and transplant assays, we developed preclinical models of AEL and non-erythroid acute leukemia and describe the central role of mutational cooperativity in determining leukemia lineage. Different combination of mutations in Trp53, Bcor, Dnmt3a, Rb1, and Nfix resulted in the development of leukemia with an erythroid phenotype, accompanied by the acquisition of alterations in signaling and transcription factor genes that recapitulate human AEL by cross-species genomic analysis. Clonal expansion during tumor evolution was driven by mutational cooccurrence, with clones harboring a higher number of founder and secondary lesions (eg, mutations in signaling genes) showing greater evolutionary fitness. Mouse and human AEL exhibited deregulation of genes regulating erythroid development, notably Gata1, Klf1, and Nfe2, driven by the interaction of mutations of the epigenetic modifiers Dnmt3a and Tet2 that perturbed methylation and thus expression of lineage-specific transcription factors. The established mouse leukemias were used as a platform for drug screening. Drug sensitivity was associated with the leukemia genotype, with the poly (ADP-ribose) polymerase inhibitor talazoparib and the demethylating agent decitabine efficacious in Trp53/Bcor-mutant AEL, CDK7/9 inhibitors in Trp53/Bcor/Dnmt3a-mutant AEL, and gemcitabine and bromodomain inhibitors in NUP98-KDM5A leukemia. In conclusion, combinatorial genome editing has shown the interplay of founding and secondary genetic alterations in phenotype and clonal evolution, epigenetic regulation of lineage-specific transcription factors, and therapeutic tractability in erythroid leukemogenesis.


Subject(s)
Gene Editing , Leukemia, Erythroblastic, Acute/genetics , Animals , CRISPR-Cas Systems , Clonal Evolution , Epigenesis, Genetic , Hematopoiesis , Humans , Mice , Mutation , Transcriptome
14.
Clin Cancer Res ; 26(18): 4995-5006, 2020 09 15.
Article in English | MEDLINE | ID: mdl-32631955

ABSTRACT

PURPOSE: Rhabdoid tumors are devastating pediatric cancers in need of improved therapies. We sought to identify small molecules that exhibit in vitro and in vivo efficacy against preclinical models of rhabdoid tumor. EXPERIMENTAL DESIGN: We screened eight rhabdoid tumor cell lines with 481 small molecules and compared their sensitivity with that of 879 other cancer cell lines. Genome-scale CRISPR-Cas9 inactivation screens in rhabdoid tumors were analyzed to confirm target vulnerabilities. Gene expression and CRISPR-Cas9 data were queried across cell lines and primary rhabdoid tumors to discover biomarkers of small-molecule sensitivity. Molecular correlates were validated by manipulating gene expression. Subcutaneous rhabdoid tumor xenografts were treated with the most effective drug to confirm in vitro results. RESULTS: Small-molecule screening identified the protein-translation inhibitor homoharringtonine (HHT), an FDA-approved treatment for chronic myelogenous leukemia (CML), as the sole drug to which all rhabdoid tumor cell lines were selectively sensitive. Validation studies confirmed the sensitivity of rhabdoid tumor to HHT was comparable with that of CML cell lines. Low expression of the antiapoptotic gene BCL2L1, which encodes Bcl-XL, was the strongest predictor of HHT sensitivity, and HHT treatment consistently depleted Mcl-1, the synthetic-lethal antiapoptotic partner of Bcl-XL. Rhabdoid tumor cell lines and primary-tumor samples expressed low BCL2L1, and overexpression of BCL2L1 induced resistance to HHT in rhabdoid tumor cells. Furthermore, HHT treatment inhibited rhabdoid tumor cell line and patient-derived xenograft growth in vivo. CONCLUSIONS: Rhabdoid tumor cell lines and xenografts are highly sensitive to HHT, at least partially due to their low expression of BCL2L1. HHT may have therapeutic potential against rhabdoid tumors.


Subject(s)
Homoharringtonine/pharmacology , Protein Biosynthesis/drug effects , Rhabdoid Tumor/drug therapy , Animals , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Resistance, Neoplasm/genetics , Female , Gene Expression Regulation, Neoplastic , Homoharringtonine/therapeutic use , Humans , Mice , Rhabdoid Tumor/pathology , Xenograft Model Antitumor Assays , bcl-X Protein/genetics
15.
Lancet Infect Dis ; 20(8): 964-975, 2020 08.
Article in English | MEDLINE | ID: mdl-32275867

ABSTRACT

BACKGROUND: (+)-SJ000557733 (SJ733) is a novel, orally bioavailable inhibitor of Plasmodium falciparum ATP4. In this first-in-human and induced blood-stage malaria phase 1a/b trial, we investigated the safety, tolerability, pharmacokinetics, and antimalarial activity of SJ733 in humans. METHODS: The phase 1a was a single-centre, dose-escalation, first-in-human study of SJ733 allowing modifications to dose increments and dose-cohort size on the basis of safety and pharmacokinetic results. The phase 1a took place at St Jude Children's Research Hospital and at the University of Tennessee Clinical Research Center (Memphis, TN, USA). Enrolment in more than one non-consecutive dose cohort was allowed with at least 14 days required between doses. Participants were fasted in seven dose cohorts and fed in one 600 mg dose cohort. Single ascending doses of SJ733 (75, 150, 300, 600, 900, or 1200 mg) were administered to participants, who were followed up for 14 days after SJ733 dosing. Phase 1a primary endpoints were safety, tolerability, and pharmacokinetics of SJ733, and identification of an SJ733 dose to test in the induced blood-stage malaria model. The phase 1b was a single-centre, open-label, volunteer infection study using the induced blood-stage malaria model in which fasted participants were intravenously infected with blood-stage P falciparum and subsequently treated with a single dose of SJ733. Phase 1b took place at Q-Pharm (Herston, QLD, Australia) and was initiated only after phase 1a showed that exposure exceeding the threshold minimum exposure could be safely achieved in humans. Participants were inoculated on day 0 with P falciparum-infected human erythrocytes (around 2800 parasites in the 150 mg dose cohort and around 2300 parasites in the 600 mg dose cohort), and parasitaemia was monitored before malaria inoculation, after inoculation, immediately before SJ733 dosing, and then post-dose. Participants were treated with SJ733 within 24 h of reaching 5000 parasites per mL or at a clinical score higher than 6. Phase 1b primary endpoints were calculation of a parasite reduction ratio (PRR48) and parasite clearance half-life, and safety and tolerability of SJ733 (incidence, severity, and drug-relatedness of adverse events). In both phases of the trial, SJ733 hydrochloride salt was formulated as a powder blend in capsules containing 75 mg or 300 mg for oral administration. Healthy men and women (of non-childbearing potential) aged 18-55 years were eligible for both studies. Both studies are registered with ClinicalTrials.gov (NCT02661373 for the phase 1a and NCT02867059 for the phase 1b). FINDINGS: In the phase 1a, 23 healthy participants were enrolled and received one to three non-consecutive doses of SJ733 between March 14 and Dec 7, 2016. SJ733 was safe and well tolerated at all doses and in fasted and fed conditions. 119 adverse events were recorded: 54 (45%) were unrelated, 63 (53%) unlikely to be related, and two (2%) possibly related to SJ733. In the phase 1b, 17 malaria-naive, healthy participants were enrolled. Seven participants in the 150 mg dose cohort were inoculated and dosed with SJ733. Eight participants in the 600 mg dose cohort were inoculated, but two participants could not be dosed with SJ733. Two additional participants were subsequently inoculated and dosed with SJ733. SJ733 exposure increased proportional to the dose through to the 600 mg dose, then was saturable at higher doses. Fasted participants receiving 600 mg exceeded the target area under the concentration curve extrapolated to infinity (AUC0-∞) of 13 000 µg × h/L (median AUC0-∞ 24 283 [IQR 16 135-31 311] µg × h/L, median terminal half-life 17·4 h [IQR 16·1-24·0], and median timepoint at which peak plasma concentration is reached 1·0 h [0·6-1·3]), and this dose was tested in the phase 1b. All 15 participants dosed with SJ733 had at least one adverse event. Of the 172 adverse events recorded, 128 (74%) were mild. The only adverse event attributed to SJ733 was mild bilateral foot paraesthesia that lasted 3·75 h and resolved spontaneously. The most common adverse events were related to malaria. Based on parasite clearance half-life, the derived log10PRR48 and corresponding parasite clearance half-lives were 2·2 (95% CI 2·0-2·5) and 6·47 h (95% CI 5·88-7·18) for 150 mg, and 4·1 (3·7-4·4) and 3·56 h (3·29-3·88) for 600 mg. INTERPRETATION: The favourable pharmacokinetic, tolerability, and safety profile of SJ733, and rapid antiparasitic effect support its development as a fast-acting component of combination antimalarial therapy. FUNDING: Global Health Innovative Technology Fund, Medicines for Malaria Venture, and the American Lebanese Syrian Associated Charities.


Subject(s)
Antimalarials/therapeutic use , Heterocyclic Compounds, 4 or More Rings/therapeutic use , Isoquinolines/therapeutic use , Malaria, Falciparum/drug therapy , Malaria, Falciparum/parasitology , Plasmodium falciparum/drug effects , Proton Pump Inhibitors/therapeutic use , Adult , Antimalarials/administration & dosage , Antimalarials/adverse effects , Antimalarials/pharmacokinetics , Case-Control Studies , Erythrocytes/drug effects , Erythrocytes/parasitology , Female , H(+)-K(+)-Exchanging ATPase/metabolism , Heterocyclic Compounds, 4 or More Rings/administration & dosage , Heterocyclic Compounds, 4 or More Rings/adverse effects , Heterocyclic Compounds, 4 or More Rings/pharmacokinetics , Humans , Isoquinolines/administration & dosage , Isoquinolines/adverse effects , Isoquinolines/pharmacokinetics , Life Cycle Stages/drug effects , Male , Middle Aged , Plasmodium falciparum/growth & development , Plasmodium falciparum/metabolism , Proton Pump Inhibitors/administration & dosage , Proton Pump Inhibitors/adverse effects , Proton Pump Inhibitors/pharmacokinetics , Treatment Outcome , Young Adult
16.
Eur J Med Chem ; 182: 111643, 2019 Nov 15.
Article in English | MEDLINE | ID: mdl-31514017

ABSTRACT

Developing drugs for CNS related diseases continues to be one of the most challenging endeavors in drug discovery. This is at least in part related to the existence of the Blood Brain Barrier (BBB), a complex multicellular organization that provides selective access to required nutrients and hormones, while removing waste and restricting exposure to potential harmful toxins, pathogens, and xenobiotics. Consequently, designing and selecting molecules that can overcame this protection system are unique and critical aspects of the CNS drug discovery. Here we review modern CNS pharmacokinetic concepts and methods suitable for early drug discovery, and medicinal chemistry strategies towards molecules with optimal CNS exposure.


Subject(s)
Central Nervous System Agents/pharmacology , Central Nervous System/drug effects , Drug Discovery , Animals , Blood-Brain Barrier/drug effects , Central Nervous System Agents/chemistry , Drug Delivery Systems , Humans , Molecular Structure , Structure-Activity Relationship
17.
Cancer Cell ; 34(3): 411-426.e19, 2018 09 10.
Article in English | MEDLINE | ID: mdl-30146332

ABSTRACT

Personalized cancer therapy targeting somatic mutations in patient tumors is increasingly being incorporated into practice. Other therapeutic vulnerabilities resulting from changes in gene expression due to tumor specific epigenetic perturbations are progressively being recognized. These genomic and epigenomic changes are ultimately manifest in the tumor proteome and phosphoproteome. We integrated transcriptomic, epigenomic, and proteomic/phosphoproteomic data to elucidate the cellular origins and therapeutic vulnerabilities of rhabdomyosarcoma (RMS). We discovered that alveolar RMS occurs further along the developmental program than embryonal RMS. We also identified deregulation of the RAS/MEK/ERK/CDK4/6, G2/M, and unfolded protein response pathways through our integrated analysis. Comprehensive preclinical testing revealed that targeting the WEE1 kinase in the G2/M pathway is the most effective approach in vivo for high-risk RMS.


Subject(s)
Antineoplastic Agents/pharmacology , Biomarkers, Tumor/antagonists & inhibitors , Cell Cycle Proteins/antagonists & inhibitors , Muscle Neoplasms/drug therapy , Nuclear Proteins/antagonists & inhibitors , Protein-Tyrosine Kinases/antagonists & inhibitors , Rhabdomyosarcoma/drug therapy , Animals , Antineoplastic Agents/therapeutic use , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Child , Epigenomics , Female , G2 Phase Cell Cycle Checkpoints/drug effects , Gene Expression Profiling , Gene Expression Regulation, Neoplastic/drug effects , Gene Expression Regulation, Neoplastic/genetics , Genomics , Humans , Male , Mice , Molecular Targeted Therapy/methods , Muscle Neoplasms/genetics , Muscle Neoplasms/pathology , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Precision Medicine/methods , Protein-Tyrosine Kinases/genetics , Protein-Tyrosine Kinases/metabolism , Proteomics , Rhabdomyosarcoma/genetics , Rhabdomyosarcoma/pathology , Signal Transduction/drug effects , Signal Transduction/genetics , Unfolded Protein Response/genetics , Xenograft Model Antitumor Assays
18.
Nat Med ; 24(4): 427-437, 2018 05.
Article in English | MEDLINE | ID: mdl-29505030

ABSTRACT

Spinal bulbar muscular atrophy (SBMA) is a motor neuron disease caused by toxic gain of function of the androgen receptor (AR). Previously, we found that co-regulator binding through the activation function-2 (AF2) domain of AR is essential for pathogenesis, suggesting that AF2 may be a potential drug target for selective modulation of toxic AR activity. We screened previously identified AF2 modulators for their ability to rescue toxicity in a Drosophila model of SBMA. We identified two compounds, tolfenamic acid (TA) and 1-[2-(4-methylphenoxy)ethyl]-2-[(2-phenoxyethyl)sulfanyl]-1H-benzimidazole (MEPB), as top candidates for rescuing lethality, locomotor function and neuromuscular junction defects in SBMA flies. Pharmacokinetic analyses in mice revealed a more favorable bioavailability and tissue retention of MEPB compared with TA in muscle, brain and spinal cord. In a preclinical trial in a new mouse model of SBMA, MEPB treatment yielded a dose-dependent rescue from loss of body weight, rotarod activity and grip strength. In addition, MEPB ameliorated neuronal loss, neurogenic atrophy and testicular atrophy, validating AF2 modulation as a potent androgen-sparing strategy for SBMA therapy.


Subject(s)
Muscular Atrophy, Spinal/pathology , Nerve Degeneration/pathology , Receptors, Androgen/chemistry , Receptors, Androgen/metabolism , Animals , Benzimidazoles/pharmacology , Benzimidazoles/therapeutic use , Co-Repressor Proteins/metabolism , Disease Models, Animal , Drosophila melanogaster , HEK293 Cells , Humans , Male , Mice, Transgenic , Muscular Atrophy, Spinal/drug therapy , Nerve Degeneration/drug therapy , Phenotype , Pilot Projects , Protein Domains , Trinucleotide Repeat Expansion/genetics , ortho-Aminobenzoates/pharmacology , ortho-Aminobenzoates/therapeutic use
19.
Clin Cancer Res ; 24(7): 1654-1666, 2018 04 01.
Article in English | MEDLINE | ID: mdl-29301833

ABSTRACT

Purpose: Curing all children with brain tumors will require an understanding of how each subtype responds to conventional treatments and how best to combine existing and novel therapies. It is extremely challenging to acquire this knowledge in the clinic alone, especially among patients with rare tumors. Therefore, we developed a preclinical brain tumor platform to test combinations of conventional and novel therapies in a manner that closely recapitulates clinic trials.Experimental Design: A multidisciplinary team was established to design and conduct neurosurgical, fractionated radiotherapy and chemotherapy studies, alone or in combination, in accurate mouse models of supratentorial ependymoma (SEP) subtypes and choroid plexus carcinoma (CPC). Extensive drug repurposing screens, pharmacokinetic, pharmacodynamic, and efficacy studies were used to triage active compounds for combination preclinical trials with "standard-of-care" surgery and radiotherapy.Results: Mouse models displayed distinct patterns of response to surgery, irradiation, and chemotherapy that varied with tumor subtype. Repurposing screens identified 3-hour infusions of gemcitabine as a relatively nontoxic and efficacious treatment of SEP and CPC. Combination neurosurgery, fractionated irradiation, and gemcitabine proved significantly more effective than surgery and irradiation alone, curing one half of all animals with aggressive forms of SEP.Conclusions: We report a comprehensive preclinical trial platform to assess the therapeutic activity of conventional and novel treatments among rare brain tumor subtypes. It also enables the development of complex, combination treatment regimens that should deliver optimal trial designs for clinical testing. Postirradiation gemcitabine infusion should be tested as new treatments of SEP and CPC. Clin Cancer Res; 24(7); 1654-66. ©2018 AACR.


Subject(s)
Brain Neoplasms/drug therapy , Brain Neoplasms/therapy , Animals , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Deoxycytidine/analogs & derivatives , Deoxycytidine/pharmacology , Drug Evaluation, Preclinical/methods , Humans , Mice , Mice, Nude , Treatment Outcome , Gemcitabine
20.
Nature ; 549(7670): 96-100, 2017 09 07.
Article in English | MEDLINE | ID: mdl-28854174

ABSTRACT

Paediatric solid tumours arise from endodermal, ectodermal, or mesodermal lineages. Although the overall survival of children with solid tumours is 75%, that of children with recurrent disease is below 30%. To capture the complexity and diversity of paediatric solid tumours and establish new models of recurrent disease, here we develop a protocol to produce orthotopic patient-derived xenografts at diagnosis, recurrence, and autopsy. Tumour specimens were received from 168 patients, and 67 orthotopic patient-derived xenografts were established for 12 types of cancer. The origins of the patient-derived xenograft tumours were reflected in their gene-expression profiles and epigenomes. Genomic profiling of the tumours, including detailed clonal analysis, was performed to determine whether the clonal population in the xenograft recapitulated the patient's tumour. We identified several drug vulnerabilities and showed that the combination of a WEE1 inhibitor (AZD1775), irinotecan, and vincristine can lead to complete response in multiple rhabdomyosarcoma orthotopic patient-derived xenografts tumours in vivo.


Subject(s)
Neoplasms/drug therapy , Xenograft Model Antitumor Assays/methods , Animals , Bortezomib/pharmacology , Bortezomib/therapeutic use , Camptothecin/analogs & derivatives , Camptothecin/pharmacology , Camptothecin/therapeutic use , Cell Cycle Proteins/antagonists & inhibitors , Child , Clone Cells , Drug Therapy, Combination , Epigenesis, Genetic , Female , Heterografts/drug effects , Heterografts/metabolism , Heterografts/pathology , Heterografts/transplantation , High-Throughput Screening Assays/methods , Humans , Hydroxamic Acids/pharmacology , Hydroxamic Acids/therapeutic use , Indoles/pharmacology , Indoles/therapeutic use , Irinotecan , Mice , Neoplasms/genetics , Nuclear Proteins/antagonists & inhibitors , Panobinostat , Protein-Tyrosine Kinases/antagonists & inhibitors , Pyrazoles/pharmacology , Pyrazoles/therapeutic use , Pyrimidines/pharmacology , Pyrimidines/therapeutic use , Pyrimidinones , Rhabdomyosarcoma/drug therapy , Rhabdomyosarcoma/genetics , Vincristine/pharmacology , Vincristine/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...